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Abstract
We study a two-dimensional electron system in the presence of both Rashba and
Dresselhaus spin–orbit interactions in a perpendicular magnetic field. Defining
two suitable boson operators and using the unitary transformations we are able
to obtain the exact Landau levels in the range of all the parameters. When the
strengths of the Rashba and Dresselhaus spin–orbit interactions are equal, a
new analytical solution for the vanishing Zeeman energy is found, where the
orbital and spin wavefunctions of the electron are separated. It is also shown
that in this case the Zeeman and spin–orbit splittings are independent of the
Landau level index n. Due to the Zeeman energy, new crossing between the
eigenstates |n, k, s = 1, σ 〉 and |n + 1, k, s ′ = −1, σ ′〉 is produced at a certain
magnetic field for larger Rashba spin–orbit coupling. This degeneracy leads to
a resonant spin Hall conductance if it happens at the Fermi level.

PACS numbers: 72.20.My, 73.63.Hs, 75.47.−m

Recently, spintronics, operating the spin of charge carriers in semiconductors, has attracted
much attention in both theory and experiment due to its potential application to information
technology [1–7]. One crucial step in spintronics is to produce and efficiently control the
spin current. The Rashba spin–orbit interaction [8], which can be adjusted up to 50% by the
application of gate voltages, is used to arrive at this goal [9]. The Rashba coupling stems
from the lack of structure inversion symmetry, and can be strong in semiconductors (InGaAs,
AlGaAs) [10, 11]. Besides the Rashba coupling there also exists a Dresselhaus spin–orbit
interaction in semiconductors like InSb/InAlSb [12], which originates from the lack of bulk
inversion symmetry.

The coexistence of the Rashba and Dresselhaus spin–orbit interactions gives rise to some
novel spin-dependent phenomena in semiconductors. Recently, the spin Hall effect in a two-
dimensional electron system in the absence of a magnetic field has been studied [13, 14].
When the Rashba and Dresselhaus spin–orbit interactions have the same strength, the spin
state of the wavefunctions is independent of the wave vector. The phenomenon was proposed
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to design a non-ballistic spin-field-effect transistor [15]. The experimental observations of
a spin-galvanic effect and spin–orbit coupling weak localization effects have been used to
understand the interplay between different spin–orbit types and to obtain the ratio of the
Rashba and Dresselhaus spin–orbit coefficients [16, 17].

In the presence of a perpendicular magnetic field, the Rashba and Dresselhaus spin–orbit
interactions couple all states in each Landau level, and an analytical solution to the full problem
has been attempted, but without success [18–23]. As a result, the spin Hall conductance in
this system does not get understood. In [20, 21], Shen et al investigated transport properties
of the electron system with a pure Rashba or Dresselhaus coupling. A resonant spin Hall
conductance is found for the Rashba type due to the level crossing induced by the Zeeman
energy at the Fermi level. It is very interesting to know whether the resonant spin Hall
conductance still exists in the presence of both spin–orbit couplings. When the strengths
of both spin–orbit interactions are equal, an exact solution is obtained in the absence of the
Zeeman energy [22–25]. However, we shall see below that the energy spectrum is incomplete.
The approximate energy spectrum is obtained in [21–23] by using the perturbation theory.
In the present work, we solve analytically this open problem and construct the eigenvalues
and eigenstates for such a system so that the spin Hall effect could be investigated in the
future.

The Hamiltonian for a single electron with spin- 1
2 in a plane under a perpendicular

magnetic field is given by

H = 1

2m∗ �2 − 1

2
gsµBBσz + VSO(A), (1)

where � = p + e
c
A, σi (i = x, y, z) are the Pauli matrices for electron spin, gs is the Lande

g-factor and µB is the Bohr magneton. Here we choose the Landau guage A = yBx̂. The
spin–orbit interaction has the form

VSO(A) = α

h̄
(σy�x − σx�y) +

β

h̄
(σx�x − σy�y), (2)

where α and β represent the Rashba and the Dresselhaus spin–orbit couplings, respectively.
Note that px = k is a good quantum number due to [px,H ] = 0.

In order to diagonalize the Hamiltonian (1), we introduce the bosonic annihilation operator
bkσ = 1√

2lc

[
y + c

eB
(k + ipy) +

√|aRaD|uσ

]
and the corresponding creation operator b

†
kσ =

(bkσ )†, with the cyclotron radius lc =
√

h̄c
eB

, aR = αm∗lc
h̄2 , aD = βm∗lc

h̄2 , uσ = σ [1−i sgn(aRaD)],
and the orbital index σ = ±1. Here we point out that the constant

√|aRaD|uσ in the operator
bkσ plays an important role in solving the Hamiltonian (1). Different from the pure Rashba
or Dresselhaus coupling case, the orbital space of electron is divided into two infinitely
dimensional subspaces described by the occupied number representations �σ associated with
bkσ and b

†
kσ due to this constant term (also see [23]). When aD = aR and g = 0, the total

Hamiltonian (1) can be diagonalized in �σ by a unitary transformation [22, 23]. It is surprising
that in the special case the eigenstates obtained in [22–25] are nothing but the basis vectors of
two subspaces. This means that the Landau levels decouple. However, in these works, another
solution where all the Landau levels couple each other is omitted. In terms of the bosonic
operators bkσ and b

†
kσ , the Hamiltonian (1) can be rewritten as H = H−1

⊕
H1, and

Hσ

h̄ω
= b

†
kσ bkσ + (

√
|aDaR|uσ − i

√
2aRσ+ +

√
2aDσ−)b

†
kσ

+ (
√

|aDaR|u∗
σ + i

√
2aRσ− +

√
2aDσ+)bkσ − 1

2
gσz + λ, (3)

where the cyclotron frequency ω = eB
m∗c , σ± = 1

2 (σx ± iσy), λ = 2|aDaR| + 1
2 , and g = gsm

∗
2me

with me the free electron mass.



Letter to the Editor L479

We can see from equation (3) that a state |m,↑〉 in the basis of �σ is coupled to |m + 1,↓〉
due to the Dresselhaus coupling, which is further coupled to |m + 2,↑〉 due to the Rashba
coupling. Therefore, a Landau level is coupled to an infinite number of other Landau levels.
This means that, in general, the eigenstates for the Hamiltonian (3) in �σ are convergent
infinite series in terms of the parameters aD, aR and g. After a tedious but straightforward
calculation, we find that the two-component eigenstate for the nth Landau level with quantum
numbers s and σ has the form

|n, k, s, σ 〉 = 1

Ansσ

+∞∑
m=0

( √|aR| √|aD|�nsT
∗
σ

−√|aD|�nsTσ

√|aR|

)(
αnσ

ms

Tσβnσ
ms

)
φmkσ ,

Tσ =
√

2

2
σ(sgn aD + i sgn aR), |Ansσ |2 = (|aR| + |aD|�2

ns

) ∞∑
m=0

(∣∣αnσ
ms

∣∣2
+

∣∣βnσ
ms

∣∣2
)

,

(4)

where the spin index s = ±1,�ns is a parameter to be determined below by requiring
αnσ

ms and βnσ
ms to be nonzero, φmkσ is the eigenstate of the mth Landau level in �σ , i.e.

b
†
kσ φmkσ = √

m + 1φm+1kσ , bkσ φmkσ = √
mφm−1kσ and 〈φm′kσ ′ |φmkσ 〉 = δmm′δσσ ′ . When

m → +∞, αnσ
ms = βnσ

ms = 0.

(i) When |aD| = |aR| = a, the eigenvalue for the nth Landau level with s and σ is given by

Ens ≡ h̄ωεns = h̄ω
(
n + 1

2 + 2a2 + 1
2 s

√
g2 + 64a4

)
. (5)

We note that Ens=−1 for g = 0 is nothing but the exact eigenvalue obtained previously
[22–25]. Therefore, the exact energy spectrum is incomplete due to the lack of the
eigenvalue for s = 1 in equation (5). Obviously, the energy splitting induced by the
Zeeman energy and spin–orbit coupling is independent of the Landau level index n, i.e.
�E = Ens=1 − Ens=−1 = h̄ω

√
g2 + 64a4.

Because the eigenvalues are independent of the parameter �ns , for simplicity, we choose
�ns = 0. For the corresponding eigenstate, we have the recursion relation

[
εns − m + 2a2 − 1

2 (1 − g)
]
αnσ

ms = [
εns − m + 2a2 − 1

2 (1 + g)
]
βnσ

ms ,√
mauσ

[
αnσ

m−1s + βnσ
m−1s

] − [
εns − m − 2a2 − 1

2 (1 − g)
]
αnσ

ms + 4a2βnσ
ms (6)

+
√

m + 1au∗
σ

[
αnσ

m+1s + βnσ
m+1s

] = 0.

Equations (5) and (6) are derived by demanding the coefficient determinant of αnσ
ms and βnσ

ms

to be zero. The same approach is employed in deriving equations (7)–(11). When g = 0,
from equation (6), we have the solution αnσ

ns = −βnσ
ns and αnσ

ms = βnσ
ms = 0 (m �= n) for the

nth Landau level with spin index s = −1 in �σ , which recovers the exact eigenstate [23].
We would like to stress that the new solution obtained here describes the electron with spin
index s = 1 in �σ . Note that when g = 0, there is no spin polarization in each Landau level,
i.e. 〈n, k, s, σ | 1

2σz|n, k, s, σ 〉 = 0. So it is not expected that there exists an out-of-plane spin
current. In this case, the orbital and spin wavefunctions of electron are separated, and the spin
part

√
2

2 (1sTσ )T is independent of the wave vector k, which is similar to that observed in the
absence of a magnetic field [15].
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(ii) When |aD| �= |aR|, the reduced eigenvalue is given by

εns = n − |aDaR|[2|aDaR|(1 − �2
ns

) − g�ns

]
a2

R − a2
D�2

ns

+
1

2
s

√√√√[
1 +

4|aDaR|(a2
D − a2

R

)
�ns − g

(
a2

R + a2
D�2

ns

)
a2

R − a2
D�2

ns

]2

+ 8n(|aD| − |aR|)2,

(7)

where s = 1 for n = 0 and the parameter �ns is determined by the following equation:√
|aDaR|

{
(|aD| − |aR|)[2(|aD| + |aR|)(|aR| − |aD|�2

ns

) − g�ns

] (
εns − n − 1

2 + a2
D + a2

R

)
+ (1 + �ns)(|aR| − |aD|�ns)

(
a2

D − a2
R + 1

2g
)} = 0. (8)

If |aD| = 0 or |aR| = 0, equation (8) is automatically satisfied and the eigenvalue (7) becomes
that in the presence of a pure Rashba or Dresselhaus spin–orbit interaction [8, 12]. When
g = 2|a2

R − a2
D|, we have the analytical expression for the eigenvalue

εns = n + 2|aDaR| + 1
2 s

√[
1 − 2sgn

(
a2

R − a2
D

)
(|aD| + |aR|)2

]2
+ 8n(|aD| − |aR|)2. (9)

Here, we have used �ns = sgn
(
a2

R − a2
D

)
. Note that when aD(aR) → aR(aD), the energy

spectrum described by equation (9) is identical to that in equation (5) with aD = aR and g = 0.
The eigenstate for the nth Landau level with s and σ is determined by the recursion

relation
[Bns(εns − n − λ + 1 + ζns) + |aDaR|Ansηns]α

nσ
n−1s = √

nu∗
σBns(Bns − Cns)β

nσ
ns ,

[Cns(εns − n − λ + ζns) + |aDaR|Ansηns]α
nσ
ns = √

nuσCns(Cns − Bns)β
nσ
n−1s ,( √

m
√|aDaR|uσAns(Cns − Bns)

−Bns(εns − m − λ + 1 + ζns) − |aDaR|Ansηns√
muσCns(Cns − Bns)

√|aDaR|[Ans(εns − m − λ + 1 − ζns) + Bnsηns]

)(
αnσ

m−1s

βnσ
m−1s

)

=
(

Cns(εns − m − λ + ζns) + |aDaR|Ansηns√
m

√|aDaR|u∗
σAns(Cns − Bns)

−√|aDaR|[Ans(εns − m − λ − ζns) + Cnsηns]
√

mu∗
σBns(Cns − Bns)

) (
αnσ

ms

βnσ
ms

)
, (10)

where

Ans = (1 − �ns)(|aR| − |aD|�ns)

|aR| + |aD|�2
ns

,

Bns = |aDaR|(1 − �2
ns

)
|aR| + |aD|�2

ns

,

Cns = a2
R − a2

D�2
ns

|aR| + |aD|�2
ns

, (11)

ζns =
1
2g

(|aR| − |aD|�2
ns

)
+ 4|aDaR|(|aD| + |aR|)�ns

|aR| + |aD|�2
ns

,

ηns = 2(|aR| + |aD|)(|aR| − |aD|�2
ns

) − g�ns

|aR| + |aD|�2
ns

.
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Figure 1. Landau levels in unit of h̄ω as a function of the dimensionless parameter |aR |. The
parameters |aD | and g are shown in the panels. Solid, s = 1; dot, s = −1.

(This figure is in colour only in the electronic version)

We note that when aD = 0 or aR = 0, the corresponding eigenstates presented in [8, 12,
20–25] can be easily obtained from equation (10).

Figure 1 shows several low-lying Landau levels as functions of |aR| for |β| = 0.2|α|,
0.6|α| and 1.2|α| and g = 0 and 0.1. When |aR| is small, the energy levels Ens=1 and
En+1s=−1 are approximately degenerate for g = 0 (see figures 1(a), (c) and (e)). If g �= 0, the
approximate degeneracy is left in figures 1(b), (d ) and ( f ). However, the Landau levels shift
in an opposite way for |aR| > |aD| and |aR| < |aD|. When |aR| > |aD| new crossing
between |n, k, s = 1, σ 〉 and |n + 1, k, s ′ = −1, σ ′〉 pointed by arrows is produced in
figures 1(b) and (d ) while there is no new mixing for |aR| < |aD| in figure 1( f ). This
new degeneracy induced by the Zeeman energy leads a resonant spin Hall conductance if it
happens at the Fermi level, similar to the case in the presence of the pure Rashba spin–orbit
interaction [20, 21]. It is expected that the resonant spin Hall conductance can be applied in
device design. The degenerate point at the Fermi level is easily controlled by the gate voltage,
which changes the Rashba coupling strength. We note that with increasing the Dresselhaus
coupling, the resonance is moved to the lower magnetic fields.

In summary, we have analytically derived the complete energy spectrum in 2D electron
systems in the presence of both Rashba and Dresselhaus spin–orbit interactions under a
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perpendicular magnetic field. The eigenvalue for the nth Landau level with s and σ is
determined by the parameter �ns , which satisfies the highly nonlinear equation (8) for
|aD| �= |aR|. For |aD| = |aR|, we obtain a new analytical solution when the Zeeman
energy vanishes. Each Landau level possesses two-fold degeneracy because it is independent
of the orbital index σ . We also note that the eigenvalues depend only on the absolute values of
the Rashba and Dresselhaus spin–orbit coefficients rather than their signs. The corresponding
eigenstates are convergent infinite series except those at |aR| = |aD|, g = 0 and s = −1. Once
the energy spectrum is known, we can use it to calculate physical properties of the system,
such as charge and spin Hall conductance. The work in that direction is in progress.
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